Universität

The cofinality of universally Baire sets problem

Taichi Yasuda

February 19, 2025

living.knowledge

Asperó and Schindler have solved the MM^{++} versus the Axiom (*) problem completely.

Theorem (Asperó-Schindler, 2019)

 MM^{++} implies the Axiom (*).

Definition (Woodin, 1990s)

(*):

- **1.** The Axiom of Determinacy holds in $L(\mathbb{R})$.
- 2. There is a $L(\mathbb{R})$ -generic filter $g \subset \mathbb{P}_{max}$ such that $\mathcal{P}(\omega_1) \subset L(\mathbb{R})[g]$.

Definition (Woodin)

(*)⁺⁺: There exists Γ ⊂ P(ℝ) and g ⊂ P_{max} such that
1. L(Γ, ℝ) ⊨ AD⁺.
2. g is L(Γ, ℝ)-generic and P(ℝ) ∈ L(Γ, ℝ)[g].

Woodin also defined $(*)^+$ and proved that $(*)^+$ is equivalent to $(*)^{++}$ in ZFC (2021).

Extensions of (*)

Definition (Woodin)

(*)⁺⁺: There exists Γ ⊂ P(ℝ) and g ⊂ P_{max} such that
1. L(Γ, ℝ) ⊨ AD⁺.
2. g is L(Γ, ℝ)-generic and P(ℝ) ∈ L(Γ, ℝ)[g].

Woodin also defined $(*)^+$ and proved that $(*)^+$ is equivalent to $(*)^{++}$ in ZFC (2021). Open question: Is $(*)^{++}$ compatible with MM⁺⁺?

Definition (Woodin)

(*)⁺⁺: There exists $\Gamma \subset \mathcal{P}(\mathbb{R})$ and $g \subset \mathbb{P}_{max}$ such that **1.** $L(\Gamma, \mathbb{R}) \models AD^+$. **2.** g is $L(\Gamma, \mathbb{R})$ -generic and $\mathcal{P}(\mathbb{R}) \in L(\Gamma, \mathbb{R})[g]$.

Woodin also defined $(*)^+$ and proved that $(*)^+$ is equivalent to $(*)^{++}$ in ZFC (2021). Open question: Is $(*)^{++}$ compatible with MM⁺⁺?

Theorem (Woodin)

All known models of MM^{++} do not satisfy the Axiom $(*)^{++}$.

Those failures are closely related to the cofinality of universally Baire sets.

Definition (Feng-Magidor-Woodin)

A set of reals A is *universally Baire* if there are trees T and U on $\omega \times ON$ such that A = p[T] and for all posets \mathbb{P} ,

 $\Big\|_{\mathbb{P}} p[\check{\mathbf{U}}] = \mathbb{R} \setminus p[\check{\mathsf{T}}].$

 Γ^∞ denotes the set of all universally Baire sets of reals.

Assuming a proper class of Woodin cardinals, Γ^{∞} has the following nice properties:

- (Martin-Steel, Woodin) Γ[∞] is closed under taking continuous preimages, countable joins, complements, projections.
- (Woodin) For each $A \in \Gamma^{\infty}$, $L(A, \mathbb{R}) \models AD^+$ and $\mathcal{P}(\mathbb{R}) \cap L(A, \mathbb{R}) \subset \Gamma^{\infty}$.

universally Baire sets

For an AD⁺-model M,

$$\Theta^{\mathcal{M}} = \sup\{\alpha \mid \exists f \in \mathcal{M}(f \colon \mathbb{R}^{\mathcal{M}} \to \alpha \text{ is surjective })\}.$$

Definition

 $\theta_{\mathsf{u}\mathsf{B}} = \mathsf{sup}\{\Theta^{\mathsf{L}(A,\mathbb{R})} \mid A \in \Gamma^{\infty}\}$

- Γ^{∞} is prewell-ordered by Wadge reducibility \leq_{w} and θ_{uB} is the length of $(\Gamma^{\infty}, \leq_{w})$.
- Note that if $L(\Gamma^{\infty}, \mathbb{R}) \models AD^+$ and $\mathcal{P}(\mathbb{R}) \cap L(\Gamma^{\infty}, \mathbb{R}) = \Gamma^{\infty}$, then $\theta_{uB} = \Theta^{L(\Gamma^{\infty}, \mathbb{R})}$.
- Sealing implies that $L(\Gamma^{\infty}, \mathbb{R}) \models AD^+$ and $\mathcal{P}(\mathbb{R}) \cap L(\Gamma^{\infty}, \mathbb{R}) = \Gamma^{\infty}$ hold in any set generic extensions.

universally Baire sets

For an AD⁺-model M,

$$\Theta^{\mathcal{M}} = \sup\{\alpha \mid \exists f \in \mathcal{M}(f \colon \mathbb{R}^{\mathcal{M}} \to \alpha \text{ is surjective })\}.$$

Definition

 $\theta_{\mathsf{u}\mathsf{B}} = \mathsf{sup}\{\Theta^{\mathsf{L}(\mathsf{A},\mathbb{R})} \mid \mathsf{A} \in \Gamma^{\infty}\}$

- Γ^{∞} is prewell-ordered by Wadge reducibility \leq_{w} and θ_{uB} is the length of $(\Gamma^{\infty}, \leq_{w})$.
- Note that if $L(\Gamma^{\infty}, \mathbb{R}) \models AD^+$ and $\mathcal{P}(\mathbb{R}) \cap L(\Gamma^{\infty}, \mathbb{R}) = \Gamma^{\infty}$, then $\theta_{uB} = \Theta^{L(\Gamma^{\infty}, \mathbb{R})}$.
- Sealing implies that $L(\Gamma^{\infty}, \mathbb{R}) \models AD^+$ and $\mathcal{P}(\mathbb{R}) \cap L(\Gamma^{\infty}, \mathbb{R}) = \Gamma^{\infty}$ hold in any set generic extensions.
- Under MM⁺⁺, $2^{\aleph_0} = \aleph_2$ and $\underline{\delta}_2^1 = \aleph_2$. Hence $\omega_2 < \theta_{uB} \leq \omega_3$. Since Γ^{∞} is closed under countable joins, $cf(\theta_{uB}) > \omega$. Therefore the possible values of $cf(\theta_{uB})$ are ω_1, ω_2 , and ω_3 .

$(*)^{++}$ and the cofinality of universally Baire sets

Assuming MM⁺⁺ and a proper class of Woodin cardinals, $(*)^{++}$ is witnessed by Γ^{∞} .

Theorem (Woodin)

Assume MM^{++} . Then $(*)^{++}$ implies $cf(\theta_{uB}) = \theta_{uB} = \omega_3$. Moreover, assume a proper class of Woodin cardinals. Equivalent are

- **1.** (*)⁺⁺.
- **2.** $\mathcal{P}(\mathbb{R}) \cap L(\Gamma^{\infty}, \mathbb{R}) = \Gamma^{\infty}$ and there exists $L(\Gamma^{\infty}, \mathbb{R})$ -generic $g \subset \mathbb{P}_{max}$ such that $\mathcal{P}(\omega_2) \in L(\Gamma^{\infty}, \mathbb{R})[g]$.

$(*)^{++}$ and the cofinality of universally Baire sets

Assuming MM⁺⁺ and a proper class of Woodin cardinals, $(*)^{++}$ is witnessed by Γ^{∞} .

Theorem (Woodin)

Assume MM^{++} . Then $(*)^{++}$ implies $cf(\theta_{uB}) = \theta_{uB} = \omega_3$. Moreover, assume a proper class of Woodin cardinals. Equivalent are

2. $\mathfrak{P}(\mathbb{R}) \cap L(\Gamma^{\infty}, \mathbb{R}) = \Gamma^{\infty}$ and there exists $L(\Gamma^{\infty}, \mathbb{R})$ -generic $g \subset \mathbb{P}_{max}$ such that $\mathfrak{P}(\omega_2) \in L(\Gamma^{\infty}, \mathbb{R})[g]$.

Theorem (Woodin)

Suppose that κ is supercompact and V[G] is a κ -c.c. extension in which $\kappa = \omega_2$. Then in $V[G] cf(\theta_{uB})$ is either ω_1 or ω_2 . Hence in the standard models of MM⁺⁺, (*)⁺⁺ fails.

But the exact value of $cf(\theta_{uB})$ is unknown in the standard models of MM^{++} .

The cofinality of universally Baire sets problem

Which values of $cf(\theta_{uB})$ are compatible with MM⁺⁺ (or fragments of MM⁺⁺)?

Which values of $cf(\theta_{uB})$ are compatible with MM⁺⁺ (or fragments of MM⁺⁺)?

Fistly, Sealing itself seems nothing to do with the value of $\mathsf{cf}(\theta_{\mathsf{uB}}).$

Theorem (Blue-Sargsyan)

For each $i \in \{1, 2, 3\}$, Sealing+cf(θ_{uB}) = ω_i is consistent.

Which values of $cf(\theta_{uB})$ are compatible with MM⁺⁺ (or fragments of MM⁺⁺)?

Fistly, Sealing itself seems nothing to do with the value of $\mathsf{cf}(\theta_{\mathsf{uB}}).$

Theorem (Blue-Sargsyan)

For each $i \in \{1, 2, 3\}$, Sealing+cf(θ_{uB}) = ω_i is consistent.

 \mathbb{P}_{max} forcing is the only known way to obtain models of $(*)^{++}$ (and $cf(\theta_{uB}) = \omega_3$).

Theorem

- (Woodin) $ZFC + MM^{++}(c) + (*)^{++}$ is consistent.
- (Schindler-Y., 2024) ZFC + $MM_{c}^{*,++}$ + (*)⁺⁺ is consistent.

■ (Blue-Larson-Sargsyan, 2025) For each $n \in [3, \omega)$, ZFC + MM⁺⁺(c) + $\forall i \in [2, n] \neg \Box(\aleph_i) + (*)^{++}$ is consistent.

We know that $cf(\theta_{uB})$ is eihter ω_1 or ω_2 in the standard models of MM⁺⁺.

To compute the exact value, it is necessary to understand how SSP forcings can change the structure of $(\Gamma^{\infty}, \leq_w)$.

We know that $cf(\theta_{uB})$ is eihter ω_1 or ω_2 in the standard models of MM⁺⁺.

To compute the exact value, it is necessary to understand how SSP forcings can change the structure of $(\Gamma^{\infty}, \leq_{w})$.

Question

When and which kind of SSP forcing \mathbb{P} adds a new universally Baire sets \dot{B} such that for all $A \in \Gamma^{\infty}$, $\left\| \frac{1}{\mathbb{P}} A^{\dot{G}} <_{w} \dot{B} \right\|$?

If \mathbb{P} does not add such a new universally Baire set, we say \mathbb{P} is *uB-bounding*.

We know that $cf(\theta_{uB})$ is eihter ω_1 or ω_2 in the standard models of MM⁺⁺.

To compute the exact value, it is necessary to understand how SSP forcings can change the structure of $(\Gamma^{\infty}, \leq_{w})$.

Question

When and which kind of SSP forcing \mathbb{P} adds a new universally Baire sets \dot{B} such that for all $A \in \Gamma^{\infty}$, $\left\| \frac{1}{\mathbb{P}} A^{\dot{G}} <_{w} \dot{B} \right\|$?

If \mathbb{P} does not add such a new universally Baire set, we say \mathbb{P} is *uB-bounding*.

• (Woodin) If NS_{ω_1} is saturated and $\mathfrak{P}(\omega_1)^{\#}$ exists, then $\underline{\delta}_2^1 = \aleph_2$.

We know that $cf(\theta_{uB})$ is eihter ω_1 or ω_2 in the standard models of MM⁺⁺.

To compute the exact value, it is necessary to understand how SSP forcings can change the structure of $(\Gamma^{\infty}, \leq_{w})$.

Question

When and which kind of SSP forcing \mathbb{P} adds a new universally Baire sets \dot{B} such that for all $A \in \Gamma^{\infty}$, $\left\| \frac{1}{\mathbb{P}} A^{\dot{G}} <_{w} \dot{B} \right\|$?

If \mathbb{P} does not add such a new universally Baire set, we say \mathbb{P} is *uB-bounding*.

- (Woodin) If NS_{ω_1} is saturated and $\mathfrak{P}(\omega_1)^{\#}$ exists, then $\underline{\delta}_2^1 = \aleph_2$.
- If $cf(\theta_{uB}) > \omega_1$, then Namba forcing is not uB-bounding.
- (Woodin) Under $MM^{++} + cf(\theta_{uB}) = \omega_1 + (weak)$ UBH, every SSP forcing is uB-bounding.

The cofinality of universally Baire sets problem

Theorem (Neeman-Zapletal)

Let δ be a weakly compact Woodin cardinal and \mathbb{P} be a proper forcing of size $< \delta$. Then in $V^{\mathbb{P}}$ there is an elementary embedding $j: L(\mathbb{R})^{V} \to L(\mathbb{R})^{V^{\mathbb{P}}}$ which fixes all ordinals. Hence \mathbb{P} does not change $\Theta^{L(\mathbb{R})}$.

Foreman-Magidor showed more general results for reasonable forcings.

Theorem (Neeman-Zapletal)

Let δ be a weakly compact Woodin cardinal and \mathbb{P} be a proper forcing of size $< \delta$. Then in $V^{\mathbb{P}}$ there is an elementary embedding $j: L(\mathbb{R})^{V} \to L(\mathbb{R})^{V^{\mathbb{P}}}$ which fixes all ordinals. Hence \mathbb{P} does not change $\Theta^{L(\mathbb{R})}$.

Foreman-Magidor showed more general results for reasonable forcings.

Theorem

Assume Sealing and a proper class of Woodin cardinals. Let δ be good Woodin limit of Woodins and \mathbb{P} be a proper forcing of size $< \delta$. Then $\Big|\Big|_{\mathbb{P}} \theta_{uB}^{\check{V}} = \theta_{uB}$. Moreover, in $\mathcal{V}^{\mathbb{P}}$ there is an elementary embedding $j: L(\Gamma^{\infty}, \mathbb{R})^{\mathcal{V}} \to L(\Gamma^{\infty}, \mathbb{R})^{\mathcal{V}^{\mathbb{P}}}$ which fixes all ordinals.

We say a Woodin cardinal δ is *good* if whenever $G \subset \mathbb{Q}_{<\delta}$ is V-generic, then $\mathfrak{j}_G(\Gamma^{\infty}) = (\Gamma^{\infty})^{V[G]}$.

Theorem

 $PFA + cf(\theta_{uB}) = \omega_1 \text{ is consistent.}$

The cofinality of universally Baire sets problem

Questions

There are many open questions around the cofinality of θ_{uB} problem. I list some of them:

- 1. Assume cf(θ_{uB}) = ω_1 . Is every SSP forcing uB-bounding?
- 2. What are the possible values of $cf(\theta_{uB})$ in Namba forcing extensions?
- 3. Is the following statement compatible with MM^{++} ? "There exists $A \subset \mathbb{R}$ such that $(A, \mathbb{R}) \models AD^+$ and Γ^{∞} is contained in the Suslin-co-Suslin sets of $L(A, \mathbb{R})$ "

Thank you for listening!!

Bibliography

- Asperó, D. & Schindler, R. Martin's Maximum⁺⁺ implies Woodin's axiom (*). <u>Annals Of</u> <u>Mathematics</u>. 193 pp. 793-835 (2021)
- [2] Feng, Q., Magidor, M. & Woodin, H. Universally Baire Sets of Reals. <u>Set Theory Of The</u> <u>Continuum</u>. pp. 203-242 (1992)
- [3] Foreman, Matthew & Magidor, Menachem (1995). Large cardinals and definable counterexamples to the continuum hypothesis. Annals of Pure and Applied Logic 76 (1):47-97.
- [4] Neeman, Itay & Zapletal, Jindřich. "Proper forcings and absoluteness in L(ℝ)." Commentationes Mathematicae Universitatis Carolinae 39.2 (1998): 281-301. http://eudml.org/doc/248282.
- [5] Schindler, R. & Yasuda, T. Martin's Maximum^{*,++} in P_{max} extensions of strong models of determinacy. (2024), https://arxiv.org/abs/2404.12836
- [6] Woodin, W. Hugh. The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal. (De Gruyter, 2010), https://doi.org/10.1515/9783110213171
- [7] Woodin, W. Hugh. The equivalence of Axiom (*)⁺ and Axiom (*)⁺⁺. Journal of Mathematical Logic.